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ABSTRACT
The use of the Internet for learning provides a unique and
growing opportunity to revisit the task of quantifying what
people learn about a given subject in different regions around
the world. Google alone receives over 5 billion searches a day,
and its publicly available data provides insight into the learn-
ing process that is otherwise unobservable on a global scale.
In this paper, we introduce the Computer Science Literacy-
proxy Index via Search (CSLI-s), a measure that utilizes online
search data to estimate trends in computer science education.
This measure uses statistical signal processing techniques to
aggregate search volumes from a spectrum of topics into a co-
herent score. We intentionally explore and mitigate the biases
of search data and, in the process, develop CSLI-s scores that
correlate with traditional, more expensive metrics of learning.
Furthermore, we use search trend data to measure patterns in
subject literacy across countries and over time. To the best of
our knowledge, this is the first measure of topical literacy via
Internet search trends. The Internet is becoming a growing tool
for learners and, as such, we anticipate search trend data will
have growing relevance to the learning science community.

Author Keywords
Google Search Trends, measuring quality education, Informal
education, curricula patterns

1. INTRODUCTION
Improving education is an implicit objective of scientific com-
munities like Learning at Scale, as well as other international
institutions such as the United Nations. The United Nations
Sustainable Development Goal (SDG) 4 is to "Ensure inclusive
and equitable quality education and promote lifelong learn-
ing opportunities for all." Quantifying progress towards this
goal, however, has remained a difficult task – especially with
regards to the quality of learning.

The problem of measuring education quality becomes espe-
cially challenging when we consider rapidly changing topics
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such as computer science and climate change. Computer sci-
ence is more popular every year and is reaching an increasingly
diverse set of students [11]. Similarly, the rapidly-evolving
climate crisis demands frequent revision of climate change
curricula.

Progress on SDG 4 has proven to so difficult to quantify that
the United Nations has revisited whether it was an appropriate
SDG at all [17]. Systematic reviews to understand how curric-
ula are taught, and to whom, have been conducted [27, 4, 20].
However, these reviews are expensive to administer around
the world, slow to respond to new curricula, and only include
classroom education (thereby neglecting informal learning).
Though often overlooked, informal learning is a crucial part of
the overall fabric of education [8]. Furthermore, the number
of informal learners and their progress are not decisively avail-
able, in contrast to class occupancy and examination scores in
formal institutions. As a result, global exams such as PISA are
unsatisfactory measures of learning. Such exams are adminis-
tered in a small handful of countries, only test core concepts
like literacy and numeracy in high school students, and are
unable to answer questions about educational topics in the
population as a whole.

In contrast with the methods described above, Internet search
data provides a unique opportunity to understand global ed-
ucation. Google receives over 5 billion search queries a day,
which is roughly 1 search per person per day globally. The
overall search trend data is public and free. As the most pop-
ular search engine, it presents an opportunity to learn about
tendencies and quantity of questions people have in different
regions. In the field of disease modelling, Google searches
are successfully used to track the spread of influenza, which
is a loose indication that search data might prove useful for
tracking the spread of education [12].

As a motivating example, consider a user searching "How to
determine k in k-means clustering?" This user, by conducting
this search, signals curiosity which is largely unique to when
one is learning, teaching, or practicing artificial intelligence
(AI). When this search is executed, the search data then con-
tains a signal that this particular user is “AI-literate" or gaining
AI-literacy. This single search tells us even more: we can ob-
serve if the search was during school session and its temporal
relationship to other AI-related queries from the user.

One search from an individual, taken alone, may not paint a
very convincing picture of CS literacy worldwide. However,
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Figure 1. Visualization of data from Google search trends. Top Row: Cities with highest relative search volume for different topics, normalized.
Greenhouse Gas, Bayes’ Theorem, and Null Pointers are keywords related to climate change, artificial intelligence, and computer science, respectively.
Bottom Row: Temporal patterns for a search topic volume over 5 years in the USA, overlaid with school holidays and breaks.

when aggregated over millions of searches relating to artificial
intelligence, consistent trends emerge that tell a broader story
of learning in a given population. Figure 1 visualizes the po-
tential; there are clear patterns in the geography and timing of
Google searches. For example, there are seasonal patterns for
the keyword "Bayes’ Theorem": there are substantial dips in
search frequency when school is not in session (including in
the summer, when work in industry continues). We further ob-
serve that the dip in searches during the COVID-19 pandemic
corresponds to the shutdown of schools that took place across
the United States. Though this dip is uncharacteristically large
for the season, interest in Bayes’ Theorem seems to quickly
resurge as students begin to learn from home.

Additional examples of search term frequencies are demon-
strated in Figure 2. Each of the three plots shows the relative
popularity of a computer science topic over five years in the
United States, overlaid with school holidays (orange). The
first topic, "Random Variables", is largely learned only during
the school year. As such, it demonstrates a large decrease in
search frequency during the summer, winter, and Thanksgiving
breaks. The second example, "Markov Chain", demonstrates a
similar seasonal pattern, but the ratio of searches in the school
year to searches during the summer is smaller. The last exam-
ple, "Machine Learning", demonstrates dips only during the
winter (i.e. Christmas) holiday. This suggests that "Machine
Learning" is a concept which is searched for largely outside
of school, potentially in the workforce.

This observation of seasonal patterns in learning-related search
data suggests the existence of signal in search trend data that
captures the utility of the search term both in formal school
environments and informal environments outside of school
[8]. Indeed, this observation provided significant motivation
for our work. We believe that, individually, no single search
term measures literacy of computer science. As such, we
investigate the composition of signals for a variety of search
terms to understand subject literacy.

More concretely, we propose the following research challenge:
how can we use Internet search trends to measure the lit-
eracy of a population with respect to a certain subject? In
this paper, our main contributions are to:

Figure 2. Search terms exhibit strong, consistent seasonal patterns but
to different degrees. Each graph is relative search volume over time in
the United States.

1. Pose the challenge of measuring depth of literacy via In-
ternet search data and articulate the relevant biases of such
data,

2. Identify strong seasonal patterns in education related search
trend data that suggest the data is correlated with literacy,

3. Introduce a new measure, Computer Science Literacy-proxy
Index bu Search (CSLI-s), for extracting a measure of com-
puter science literacy from raw search statistics, which
shows notable correlation with more expensive proxies,

4. Show corollary results including (i) uncovering trends
across time and between countries and (ii) uncovering cur-
ricula patterns amongst countries,

5. Open-source our code at: compedu.stanford.edu/

googleTrends.

Our results indicate that understanding subject literacy from
Google search data is a fast and free method to gain insight
into global education, especially for domains that require a
computer like computer science, and for geographical regions
where there are no other known measures.

compedu.stanford.edu/googleTrends
compedu.stanford.edu/googleTrends


We add an important cautionary note: though this data is large
in quantity, it is not the case that "big data" is a panacea for
challenges in estimating literacy [25]. In our analysis in Sec-
tion 2, we provide a theoretical framework for articulating and
addressing the several confounding variables including, but not
limited to, the sampling bias in search data. It is hard, but not
impossible, to understand and work around these challenges.
We discuss the limitations of measuring subject literacy from
search, but observe that despite the known challenges, it allows
insight into previously unseen trends.

The analysis we provide is a proof of concept which could
be used to analyze more fine-grained educational topics (such
as human-computer interaction learning or AI learning) and
evaluating learning for other curricula, especially for domains
that require a computer. We also hope that insights in this
work provide inspiration measures of learning that distinguish
formal and informal learning. Above all, we believe this re-
search is a first step in new research directions for quantifying
global learning on a per-topic and per-region basis over time.

1.1. Related Work
1.1.1. Measuring Learning
Measuring learning has been commonly studied in formal ed-
ucation [9, 31, 41] and for informal learning [19, 45]. In
the domain of informal learning, the resources an individual
student uses is referred to as their Personal Learning Envi-
ronments (PLE) [7]. While PLEs promote learning, they
make informal learning harder to measure due to limitations
on access to private user data. Noting the dominance of online
platforms over PLEs, [1] provided detailed theory on online
learning. Several studies developed in response to the rise
of massive open-access online courses (MOOC). The first
MOOCs were given by the CS departments of research univer-
sities such as Stanford, MIT, Harvard, and Berkeley. In 2012,
millions of students signed up for online courses on Coursera,
EdX, and Udacity; with relatively little cost to entry or exit,
MOOCs attracted learners with a wide range of backgrounds,
intentions, or personal constraints to participation [35]. The
New York Times declared 2012 the "Year of the MOOC" [35]
and researchers sought to classify and quantify the informal
learners who were choosing these platforms [24, 22]. Since
2012, specialized platforms in CS which are open-access to
formal and informal learners have developed such as Code.org,
CodeAcademy, and KhanAcademy. The ways in which infor-
mal learners use these platforms has become a large area of
research [36, 30, 38, 23].

1.1.2. Search Data for Science
Data from search engines has inspired researchers mostly to
estimate or forecast economic indicators [5, 29, 10, 3, 18,
14], e.g. unemployment or inflation rates. [39] uses real time
search data to estimate political tendencies of voters in a re-
gion, and show correlations with election statistics. Similarly,
[37] and [12] predict the spread of influenza by using search
data from Yahoo and Google, respectively. Also, [13] suggest
using online user data to monitor public health. These studies
commonly use the search data in regression models where data
from official sources are also used as target variables. The
model is then trained to fit the official sources and analyzed

for the significance of the search data. This requires a labeled
training set, e.g. actual unemployment rates. Labeled data,
however, is not available for informal learning. Consequently,
the method proposed in our work does not train a supervised
model but rather uses statistical estimation tools to consolidate
different search trends and directly compare regions1 for a
given time interval.

1.2. Organization
The rest of this paper is structured as follows: In Section 2, we
mathematically describe the challenge of estimating subject
literacy from search data. In Section 3, we describe the data
available from Google Trends and, in Section 4, we present our
methodology for measuring subject literacy from this data. In
Section 5, we show that our measure has a strong correlation
with other traditional and more expensive measures. Further-
more, in Section 6, we find that our metric reveals additional
information about the geographical patterns in computer sci-
ence curricula. In Section 7, we discuss best practices for our
methods and how they could be applied to subjects other than
computer science. We conclude in Section 8 with implications
of our work for future research.

2. THEORY OF ESTIMATING LITERACY FROM SEARCH
In this section, we provide a mathematical formalization of
our goal to estimate literacy from publicly available search
data. Our formalization will provide a precise language for
understanding our claims, assumptions, and the limitations of
assessing subject literacy from search data.

Literacy Index: A meaningful subject literacy index for a
region r should be a number, Θr, which captures the depth of
how much the average person in a region knows about a given
subject at a given point in time. The computation of Θr could
assume that each individual i has their own literacy score, θi,
where the literacy index for a region r is the average of these
individual literacies, Θr = Ei∈r[θi]. Ideally, the measurement
for such a literacy index would require (1) a consortium of
well-represented world experts design a test on a given subject
and (2) have the test administered to a representative subset
of people from each region. The value of Θr would be the
average of such test scores. This test would be repeated for
each region r at regular time intervals, e.g. annually. Indeed,
this is the methodology used to compute Financial Literacy
Index [33] maintained by the Organisation for Economic Co-
operation and Development (OECD) in the Group of Twenty
(G20) countries. Unfortunately, it would be a prohibitively
expensive to run this ideal measurement for all topics and all
countries. As such, we attempt to find a proxy measure to
approximate Θr using readily available Internet search data.
In order for a literacy index to be useful, we require that the
measure correlates with proficiency in the topic, as measured
by other methods such as standardized exams.

In the development of our proposed index, we assume that
values θi are non-negative and that Θr = 0 indicates that region
1Google Trends defines regions which usually correspond to coun-
tries. Some districts, however, are presented separately from the
political entity on which they depend. We have also calculated CSLI-
s for regions instead of countries.



r has no literacy of a subject. Note that a subject literacy index,
taken alone, would be a single summary statistic of a region
but does not describe the distribution of θi completely.

Search-Based Proxy: In this work, we propose a subject
literacy index computed from Internet search data. However,
Internet data has several confounds, including a sampling
bias. Instead of measuring learning from a random sample of
individuals, we propose measuring learning from those who
are using a search engine while learning. Based on a few
assumptions, described in detail below, we claim that Θr can
be measured as:

Θr ≈ Pr(ar) · Ê[θi|ar] (1)

and that this measurement is unbiased for the subject of com-
puter science. In Equation 1, Θr is the literacy index of region
r, Pr(ar) is the probability that a user in region r has access to
Internet search, and Ê[θi|ar] is the average amount of search
frequency and keyword diversity in a subject for users in r
who have access to search. In the following subsections, we
present motivation for Equation 1. Understanding the motiva-
tion illuminates both why measuring literacy from search is a
promising opportunity and the ways in which we mitigate the
effects of biases present in Internet search data.

Motivation for Equation 1: Using the law of total expecta-
tion, we can decompose the literacy score calculation into two
terms, one for those who have access to search while learning
and a term for those who do not:

Θr = E[θr] = E[θi|ar] ·Pr(ar)+E[θi|not ar] ·Pr(not ar) (2)

Assumption 1 (Literacy without access to search): Internet
search is increasingly becoming part of learning, especially
for disciplines that require a computer such as computer sci-
ence and graphic design [32, 6]. As such, we assume that
E[θi|not ar] ·Pr(not ar), the term that represents the subject
literacy of people who do not have access to search, is close
to zero. Mathematically, this is true if either or both of the
components is near zero and the other is not unreasonably
large. In particular, if access to Internet search is universal
then Pr(not ai) is zero. On the other hand, if it is unlikely
that a user who does not have access to search is literate in
the given subject then E[θi|not si] is also close to zero. At the
time of the writing of this work, the latter claim is especially
believable for domains that require computers, such as com-
puter science. Furthermore, while access to Internet search
may not be universal, it has only increased in the last 20 years,
especially in education [32, 6]. Given these assumptions,
we take the second term in Equation 2 as negligible. This
assumption should be re-evaluated before being applied to
non-computer-based disciplines.

Assumption 2: Search Depth as a Proxy for Literacy: The
second assumption we make is that search frequency and
topical breadth is a reasonable proxy for subject literacy. Pre-
vious research [40] suggests that this assumption is reason-
able for engineering disciplines, as information-seeking has
been shown to be a substantial part of problem-solving in
those fields [40]. Mathematically, we therefore claim that
E[θi|ar] ≈ Ê[θi|ar], where Ê[θi|ar] is the estimate of literacy

based on Internet search data. Whether this holds, depends
largely on the methodology used to compose raw search data
into a measure of literacy, i.e. the exact computation of Ê[θi|ar]
(see Section 5). We note that, in many other fields, information-
seeking is not an indication of literacy, but rather an indication
that a user is learning for the first time. To acknowledge this
assumption, we consider our index a “literacy-proxy" and not
a standard subject literacy measure.

The result of these assumptions is a simple formula:

Θr = E[θr|ar] ·Pr(ar)+E[θr|not ar] ·Pr(not ar) (Equation 2)
≈ E[θr|ar] ·Pr(ar) (Assump. 1)

≈ Ê[θr|ar] ·Pr(ar) (Assump. 2)

This theory provides a groundwork for future researchers to
argue for better proxy measurements of literacy. While these
assumptions are significant, we believe that they are appropri-
ate for measuring computer science literacy. Furthermore, we
suggest that proposed measures and their assumptions can be
validated by measuring their correlation with standard, more
expensive tests of subject literacy. Moreover, we note that the
assumptions presented herein are testable and the extent to
which they are violated may be quantifiable. We leave meth-
ods to use such knowledge to mitigate known biases to future
work.

3. GOOGLE TRENDS DATA
In this work, we use data from the Google search engine,
which releases its search data publicly via Google Trends [15].
Google Trends presents a time series of Google search statis-
tics for countries and sub-regions around the world. Trends
automatically categorizes searches by topics and combines
searches across different languages (e.g. "Artificial Intelli-
gence" and "Kecerdasan Buatan", the Malay translation, are
grouped together in the same topic). Google Trends does not
expose the precise number of searches for a topic over a time
frame in a given region. Instead it provides several secondary
statistics, described below.

3.1. Interest by Region
For a single keyword k, Google Trends provides the ratio of
queries for k to the number of total queries in each region,
normalized to 100 divided by the maximum of this ratio over
all regions. This data allows comparing different regions’
relative interest in the same keyword. More concretely, if there
are sk(r, t) queries for keyword k in region r in timeframe t
and S(r, t) total queries in region r for timeframe t, Google
Trends exposes the following value for region r in time t:

Vk(r, t) =
sk(r, t)
S(r, t)

×M where M =
100

maxi
sk(i,t)
S(i,t)

For example, we can observe that in 2019:

VBayes Theorem(Seoul,2019) = 100

VBayes Theorem(Mexico City,2019) = 59

VBayes Theorem(Bengaluru,2019) = 52



This means that the percentage of Google searches from Mex-
ico City for "Bayes Theorem" is 59% of the corresponding
percentage of searches in Seoul for the same topic. Google
Trends also marks regions with low volume of search, ie.
Madagascar. Such regions have either limited access to the
Internet or an unusually low market share for Google. Google
Trends data from these regions does not precisely represent
the population in general and, as such, we omit the data from
low search volume regions in all of our analyses.

3.2. Comparative Interest by Region
Additionally, Google Trends exposes the relative popularity
between two topics. This value is the fraction of queries for
a topic A over the sum of queries for topic A and B. More
precisely, region r over time t is assigned a value of

V(A,B)(r, t) =
sA(r, t)

sA(r, t)+ sB(r, t)

scaled to 100 in total for comparison of keywords A and B.
This data allows comparing different keywords relative fre-
quencies’ in a given region.

3.3. Comparative Interest by Time:
Finally, Google Trends also exposes keywords’ relative in-
terest over time. For a given timeframe and region, Google
Trends exposes a value which reflects how the popularity of
that term has changed, on a weekly basis, over the timeframe.
We denote this value by TA(r, ti), which represents the compar-
ative interest in topic A in region r over week ti:

TA(r, ti) =
sA(r, ti)
S(r, t)

· k where k =
100

max j
sA(r,t j)

S(r,t)

We also note certain caveats for the different values described
in Sections 3.1, 3.2, and 3.3. Only 80.1% of Internet search
traffic is on Google and there are notable differences between
countries. For example, market share for Google Search is
97% in India, 95% in Brasil, 81% in the USA. Two notable ex-
ceptions to the high market share are Russia (49%) and China
(6%) [42]. As such, we expect results from these countries to
be less trustworthy.

4. MEASURING CS LITERACY-PROXY FROM GOOGLE
SEARCH
While we hope to be able to measure literacy of a variety of
subjects, computer science is a natural first subject to inves-
tigate since it (mostly) requires a computer to learn. There
are many traces of online behavior that may correlate with
informal CS learning (Google Search queries, Code.org par-
ticipation, GitHub commit activity, Stack Exchange browsing,
etc.), but we do not have a well-defined way to use these proxy
correlations to paint a picture of CS exposure for different
countries.

In this section we describe our proposed metric, Computer
Science Literacy-proxy Index by search (CSLI-s), as a country
level score which quantifies the per-capita quality of computer
science education based on Google Trends data.

Figure 3. Overview of the CSLI-s metric, which computes CS learning
scores for all geographic regions based on Internet search data.

As suggested in Section 2, we validate CLSI-s by measuring its
correlation with (perhaps noisy) signals of GitHub usage, PISA
scores, and online self-reported surveys (the last of which we
conduct in limited number of countries due to feasibility and
cost). Different measures of informal education should tell
a coherent story of learning. Ideally, each measure would
specify its limitations and potential biases. In future work,
it would be useful to run a global survey of subject literacy
to determine how to compose these different measures into a
single score.

4.1. Alternative Metrics
To understand the utility of CSLI-s we compare it to several
other metrics, described below.

PISA: PISA scores are composite scores of 15-year-old stu-
dents’ scholastic performance on mathematics, science, and
reading for 70 nations. The most recent results, at the time of
the writing of this paper, were published by OECD in 2016
[34].

Git: We propose a metric, "Git", that represents the count
of GitHub users in each region, obtained via the GitHub
Torrent [16] metadata for all 1.3 million public users. Simi-
larly, Git-Java is the count of users in each region with at least
one public Java repository. Java is a programming language
commonly taught in introductory computer science classes.

Survey: We conducted a survey of 10,000 Internet users in 10
different countries asking "How much computer science edu-
cation do you have (informal or formal)?" Respondents are se-
lectively sampled to represent three demographic dimensions:
age, gender, and geography. The survey was administered by
Google Surveys during July 2019 in all countries with support
for representative samples [28].

4.2. Computer Science Literacy-Proxy Index
by Search (CSLI-s)

CSLI-s aims to evaluate the density of CS-related exposure on
the Internet. In our approach, we utilize the minimum mean
squared error (MMSE) linear estimator, the application of
which we describe below. Intuitively, we use the MMSE linear
estimator to develop the CLSI-s metric with two properties.
Firstly, if the relative frequencies for queries on a CS-related
topic (e.g. "Semaphore") are higher in a region, our metric
should reflect a greater degree of computer science literacy.
Secondly, the prediction error for the frequencies of various



topical search terms should be minimized, which would sug-
gest that our metric is a useful proxy for CS literacy.

4.3. Background: The MMSE Linear Estimator
Intuitively, we model the underlying structure of our system
with a single scalar latent variable for each region, represent-
ing its average subject literacy, and a single vector of observed
variables, representing the keyword search frequencies. The
input of the system is θr, which represents the extent of com-
puter science learning for a random person in region r. The
output of the system is the vector W r ∈ IRM , which represents
the relative popularity for the keywords in region r.

A naive estimator would calculate E[Θ̂r|W r], the expected
value of computer science literacy conditioned on the relative
keyword popularity. However, the conditional distribution of
computer science literacy, conditioned on the search data is
unknown. Therefore, we use the Minimum Mean Square Error
Linear Estimator to estimate Θr.

The MMSE linear estimator [26] assumes that the input-output
relationship is affine, as shown in Equation 32 :

Θ̂r = Σ
T
WΘΣ

−1
W W r (3)

where ΣW is the covariance matrix for the keyword frequencies
and ΣT

WΘ
= [σW1Θ, . . . ,σWMΘ] denotes the covariance vector for

the relationship between keywords frequencies and computer
science literacy. As its name suggests, the MMSE linear
estimator minimizes the expected mean squared error between
Θr and our estimate Θ̂r amongst all models that are linear
between Θr and the observed W r. The use of these values for
the calculation of CSLI-s is provided in Section 4.4.

We can also estimate the average error for the MMSE. The
mean square error of the MMSE Linear Estimator is:

MSEMMSE =Var(Θ̂)−Σ
T
WΘΣ

−1
W ΣWΘ (4)

where Var(Θ̂) is the variance of the calculated estimations. We
use MSEMMSE to iteratively determine the correlation between
the keyword search frequencies, Wi, and CS literacy Θ.

4.4. Estimation Data
Our data matrix of Google Trends values has N = 65 rows,
each corresponding to a region of high search volume3, and
M = 26 columns, each corresponding to the popularity of
a specific keywords selected for the calculation of CSLI-s
columns. We originally generated a list of 67 keywords rel-
evant to CS via a survey administered to faculty of Stanford
2For simplicity, we can assume E[W r] = E[Θ̂r] = 0 without loss of
generality, since an additive shift of these values would not affect the
rankings of different regions.
3The following regions that lack data on CS-related keywords, al-
though not officially listed as low search volume regions by Google,
are excluded in the CSLI-s calculations: Costa Rica, Venezuela,
Lithuania, Guatemala, Ethiopia, Uzbekistan, and Cameroon. China
is also excluded because of the ban on Google and limited use of
Google in the country.

University Computer Science department in 2019. Faculty
listed all terms that they thought were indicative of literacy
in computer science. Terms without sufficient data for every
region are excluded. Figure 4 shows the standard deviation
in the count of queries for each keyword, sorted by keyword
popularity4. As the popularity of the keywords decreases, the
standard deviation of their frequencies (and hence the amount
of information provided by the frequency of corresponding
queries) across regions decreases as well. The distribution of
frequencies appears Zipfian and suggests that the most popular
keywords are the most informative. The data becomes highly
sparse after the shaded border and the standard deviations drop
sharply; thus, keywords to the right of the shaded border are
excluded in the CSLI-s calculations.

Creation of the data matrix begins with the interest by region
data (as defined in Section 3.1) for the most popular key-
word in our list, VJava(r, t), in the first column. The following
columns are filled with the comparative interest by region
data (as defined in Section 3.2), normalized by the previous
columns’ entries. More precisely, our data matrix D ∈ RNxM

is defined by:

Di j(t) =

{
VJava(i, t) j = 1

Vj−1(i, t)×
V( j, j−1)(i,t)
V( j−1, j)(i,t)

j > 1

where we have abused notation and simultaneously used j to
respond to the jth most popular keyword ( j = 1 corresponds
to "Java") and its index.

4.5. Calculation of CSLI-s
The computation of CSLI-s requires generating covariance
vectors and matrices for each region and substituting their
values into Equation 3. The steps for generating those vectors
and matrices are described below.

ΣW (t) is the covariance amongst the columns of the data matrix
D(t). It intentionally depends explicitly on year, because the
explanatory power of a given keyword frequency, given the
other keywords’ frequencies, may change over time.

Each entry of ΣT
WΘ

= [σW1Θ, . . . ,σWMΘ] is the covariance be-
tween a keyword and computer science learning. Note that
the following relationship holds: σWiΘ = ρWiΘσWiσΘ, where
σWi and σΘ are the standard deviations of their respective ran-
dom variables and ρWiΘσWi is the correlation between Wi, the
popularity of searches for i, and Θ. σWi is calculated similarly
to ΣW above. In our iterative procedure, we calculate σΘ as
the standard deviation among the estimated Θ̂ values and it-
eratively adjust ρWiΘ values to ensure the observed standard
deviations are consistent, where the MSE is minimized.

Each ρWiΘ determines the significance of keyword i to the
measurement of computer science literacy. A higher ρWiΘ

implies greater weight for the corresponding keyword in the
4Google Trends allows analyzing keywords as a search term or as
a topic. A search term shows the data for all queries that had the
exact term in the query text. A topic includes all queries related to the
keyword in all languages with characters in the Latin alphabet. We
restrict our analysis to topics to mitigate language issues in different
regions.



Figure 4. Standard deviations of keyword search data of 2018. The shaded border marks the beginning of excluded keywords.
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Figure 5. (a) CSLI-s over time, (b) CSLI-s by continental regions, (c) correlation between measures. Crucially, CLSI-s demonstrates correlation with
other measures of CS literacy in (c).

computation of CSLI-s. Our iterative process converges to
values of ρ that minimize the absolute value of the error in the
model in estimating Θ, where the weights of keywords best fit
the data. The convergence of our algorithm, and the uniquness
of the values that minimize the error, is guaranteed by the
strict convexity of Equation 4 in ρWiΘ, for each i. We note
that, when comparing different time periods of data, the same
values of ρ should be used for comparison so that keywords
have consistant significance in the computation of CSLI-s.

Θ̂r is then calculated using the values derived above and Equa-
tion 3. Θ̂r reflects how much Google users in region r are learn-
ing about computer science. Because Θ̂r is only computed
using the data from users with Internet access, we also scale
Θ̂r by the percentage of individuals (as shown in Equation
5) using Internet (U r(t)), published by International Telecom-
munication Union (ITU) [21]. As described in Section 2, we
assume that members of each region that do not have Internet
access have limited CS literacy.

CSLI-sr(t) = (Θ̂r(t)−miniΘ̂
i(t))×U r(t) (5)

In the results presented below, we normalize the resulting
values to the maximum score for easier comparison among
years. A CLSI-s score of 1 in a given time period corresponds
to the most literate region and 0 corresponds to the least literate
region.

4.6. CSLI-s scores
Table 1 shows the normalized CSLI-s scores of the most and
least literate regions for the last 5 years. The complete list of
CSLI-s scores for all regions can be found in [2].

Region 2014 2015 2016 2017 2018

Australia 1.00 1.00 1.00 1.00 1.00
South Korea 0.88 0.94 0.88 0.86 0.88

Israel 0.88 0.81 0.96 0.81 0.78
...

Pakistan 0.09 0.10 0.09 0.09 0.14
Bangladesh 0.05 0.07 0.06 0.05 0.21
Indonesia 0.08 0.01 0.01 0.04 0.07

Table 1. CSLI-s scores for selected regions.

The average CSLI-s scores from 2014 to 2018 are 0.33, 0.32,
0.34, 0.34, and 0.40, respectively. The increasing CSLI-s
scores suggest that the global quality and quantity of computer
science learning is increasing over time.

Figure 5 shows general trends of CSLI-s scores both globally
and per continent. The positive slope of the trend line in (a)
indicates a 1.5% increase per year in overall computer science
learning around the world. The continental breakdown of the
scores in (b) indicates that the increase in CSLI-s scores is
largely due to Asian regions. These statistics may inform the
computer science education community in ways that enable



policymakers to strengthen global upward trends, and where
in the world best to do so.

5. EVALUATION OF RESULTS
It is difficult to understand the accuracy of CSLI-s without a
"ground truth" measure of regions’ per-capita computer sci-
ence literacy. However, we compare CSLI-s to several alterna-
tive metrics, as suggested in Section 2. Our results, in general,
indicate that CSLI-s generates scores consistent with those
metrics. In particular, CSLI-s and the Human Development
Index (HDI) [43] are strongly positively correlated (r = 0.54)
on average. This is not surprising, as we might expect more
developed countries to have higher levels of computer science
education.

We also note that CSLI-s has a large (>0.25) positive Spearman
correlation with all other measures tested: GitHub, Git-Java,
and PISA, where the aggregate claim has p-value < 0.001.
See Figure 5-(a) for the correlations and p-values for each
individual measure. CSLI-s scores also demonstrate a high
correlation with our user survey, though we note that due to
a small sample size tested in only 10 countries, these results
may have been due to chance (p = 0.18).

PISA was highly correlated with Github and Git-Java, but none
of these correlated with the user survey. Finally, we note that
both PISA, GitHub and CSLI-s are negatively correlated with
population (correlations of -0.26, -0.29 and -0.33 respectively),
suggesting relatively better computer science literacy for less
populated nations.

6. PATTERNS IN CURRICULA
In addition to the regional, aggregate measures of literacy in-
troduced in Section 4 and the temporal patterns we observed in
Section 1, it is also possible to understand geographical trends
in curricula using unsupervised machine learning techniques.

Figure 6 shows a clustering of countries by the popularity
of computer science search terms between 2014 and 2018.
Figure 6 is generated using t-SNE [44], whereby each region
is represented as a point and distances between regions is
inversely proportional to the similarity between their search
terms’ popularities. The figure suggests that geographically
close regions are inclined to have similar types of computer
science curricula; for example, the US is close to Canada
and Austria is close to Germany. Perhaps the most striking
cluster of countries in the embedding is the cluster contain-
ing Argentina, Brazil, Chile, Thailand, Indonesia, and Turkey
(top right). Upon deeper inspection, we notice these countries
tend to have a stronger emphasis on systems (such as Inter-
net algorithms) and less emphasis on artificial intelligence
than other countries. Another cluster contains Australia and
New Zealand; this cluster is represents high search frequen-
cies for terms related to data structures and algorithms, such
as "Heap" and "Semaphore". This group also demonstrates
low search frequencies for more theoretical topics like "Finite
State Machines." The existence of clusters presents an inter-
esting opportunity for future work, as Google Trends data may
reveal novel insights into these subtle differences in countries’
curricula.
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Figure 6. t-SNE embeddings of the search popularity between different
clusters. Countries which are close to one another have similar computer
science search patterns. The cluster with Thailand and Indonesia is the
most distinct, and focuses more on systems for the Internet.

7. DISCUSSION

7.1. Best Practices
We note that while the process for calculating an index applies
generally to many different fields, CSLI-s is made specific
to computer science through the use of keywords related to
computer science learning. To better understand how different
keywords might affect our results, we performed the same
analysis as in Section 4, but with the 40 most popular keywords
from Figure 4. However, here is no significant difference in
the results, which suggests that spanning specific subfields
of computer science with the minimum amount of popular
keywords is enough to calculate a meaningful CSLI-s score.
We invite the community to develop a standard set of keywords
and topics so that a consistent way to compute the CSLI-s for
computer science subfields can be developed.

More generally, our computation of an index in computer
science such as CSLI-s applies to other fields, e.g. history,
where global literacy may be estimated with a selection of
relevant keywords. We anticipate that an analogous index for
other fields will not be heavily dependent on the exact set
of keywords used, though we leave a quantitative analysis
of this assertion to future work. We remind readers that our
source code is available, and that the assumptions described in
Section 2 should be studied carefully before using this index
for decision-making extending our analysis to other fields.
We present an example adaptation to the subject of climate
change below, in Section 7.2. We encourage others to propose
alternative measures of subject literacy from search data and
to surface, examine, and mitigate sources of bias. We consider
this a new research direction and encourage substantial caution
before using the measure for large policy decisions.

We further note that CSLI-s provides a measure of computer
science literacy on average for the entire population in a region.
Regions with strongly developed computer science literacy
may still get relatively low scores if computer science knowl-
edge is unequally distributed amongst its populace. In light of



this observation, one strategy for increasing the CSLI-s score
would be to provide equitable computer science education
for the entire population. This is consistent with the United
Nations’ Sustainable Development Goal of education for all.
Nonetheless, measuring formal and informal computer science
literacy globally is an important problem. CSLI-s is a first step
in what we hope is a rich and useful research direction.

7.2. Application to Climate Change
In the preceding sections, we built a case study around the use
of Internet search data to measure a proxy of computer science
literacy. In this subsection, we use the same methodology on a
different topic: climate change. As for computer science, we
noticed that there were substantial seasonal effects on search
terms’ frequencies; see Figure 7.

Figure 7. Search terms exhibit strong, consistent seasonal patterns. How-
ever, they exhibit them to different degrees. The changes in "Climate
Change" are less drastic between Summer and School than "Green-
house Effect".

Interestingly, searches for climate change-related topics in the
United States are lowest in the summer, when temperatures
are highest. Rather, the frequency of climate change-related
searches appears to be strongly linked to the school calendar.
These seasonal trends suggest that a similar analysis might
be applicable to climate change, though it is not clear if the
assumptions described in Section 2 are applicable. In partic-
ular, Assumption 2 likely does not hold, which would imply
that search behavior does not reflect subject “literacy." As
such, we do not propose an analogous Climate Change Index.
However, our initial experiments reveal that climate change
concepts have more substantial search volume for countries in
the Southern Hemisphere. See Figure 1, for a visualization of
this geographic pattern. While less people search for climate
change topics in the Northern Hemisphere, those searches tend
to be during the school year suggest that climate change is
primarily learned through formal education.

7.3. Curricula Timing
Additionally, we observe that Internet search trends reveal the
curricula timing of concepts in different countries. For search
terms which are more commonly searched during the school
year, temporal search patterns indicate the time within the

school year that concepts are being taught. For example, in
the U.S., search volume for "Global Warming" consistently
peaks around the 105th day of the year (April 16th), "Fossil
Fuel" consistently peaks around the 111th day of the year
(April 22nd), and "Ocean Accidification" peaks on average on
the 118th day of the year (April 29th). These dates seem to
agree with the order of topics presented in a typical class on
climate change. These results suggest that the seasonal trends
we observe likely reflect which concepts are being learned in
school.

Table 2. Days into the year when different concepts have their peak
popularity in the United States.

Concept Peak Search Day

Global Warming 105
Fossil Fuel 111

Sea Level Rise 111
Greenhouse Effect 114

Ocean Acidification 118

8. CONCLUSION
Assessing the quality of learning worldwide in a regionally spe-
cific, continuous, and inexpensive way remains an important
problem towards achieving the United Nations’ Sustainable
Development Goal 4 to "ensure inclusive and equitable quality
education and promote lifelong learning opportunities for all."
In this paper, we demonstrated that Google Trends data can be
used as a meaningful proxy for measuring worldwide progress
on this goal. To the best of our knowledge, this is the first
paper to analyze Google Trends data to understand learning.
This is likely because, until now, it has been conceptually
overlooked to derive meaningful information from the data
that Google publicly releases.

Using Google Trends data, we presented several methodolo-
gies to (1) calculate country-level per capita statistics of ed-
ucational quality, (2) measure the extent to which topics are
learned in school, and (3) find curriculum-level patterns across
geographically regions.

More specifically, we introduced a new metric to assess educa-
tional quality, the Computer Science Literacy-proxy Index by
Search (CSLI-s), using these methodologies and show that this
statistic is correlated with several other validation measures.

Using this metric, we quantified that computer science liter-
acy is growing around 1.5% per year around the world and
observed that Oceania was well ahead of the world in per
capita computer science literacy. We observed that climate
change topics tend to be much more searched in the Southern
Hemisphere. While fewer people search for climate change
topics in the Northern Hemisphere, those searches tend to be
during the school year.

As Internet accessibility rates continue to increase globally, we
anticipate that digital traces of user behavior will continue to
present a wealth of information from which we can learn about
human behavior. We hope that the methods presented in this
paper will allow researchers, educators, and policymakers to
tackle a difficult problem: an assessment of informal learning
quality around the world.
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