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ABSTRACT
Understanding exam score distributions has implications for
item response theory (IRT), grade curving, and downstream
modeling tasks such as peer grading. Historically, grades
have been assumed to be normally distributed, and to this
day the normal is the ubiquitous choice for modeling exam
scores. While this is a good assumption for tests comprised
of equally-weighted dichotomous items, it breaks down on
the highly polytomous domain of undergraduate-level ex-
ams. The logit-normal is a natural alternative because it
is has a bounded range, can represent asymmetric distri-
butions, and lines up with IRT models that perform lo-
gistic transformations on normally distributed abilities. To
tackle this question, we analyze an anonymized dataset from
Gradescope consisting of over 4000 highly polytomous un-
dergraduate exams. We show that the logit-normal better
models this data without having more parameters than the
normal. In addition, we propose a new continuous polyto-
mous IRT model that reduces the number of item-parameters
by using a logit-normal assumption at the item level.

1. INTRODUCTION
Historically, student performance on exams has been as-
sumed to be normally distributed. Grade curving originates
from the idea that students exist on a “bell curve,” in which
most are clustered around the mean and a small number
over- or under-achieve. The field of education has many
criticisms for the bell-curve mindset. A common argument
is that we should not take the observation that student per-
formance tends to look normal and turn it into a normative
practice [4, 23]. The idea that some students will inevitably
fail and only a small number can enjoy the highest level of
success runs counter to the goals of the educator, who should
want as many students as possible to succeed. This tension
plays out in the ideological battle between those who criti-
cize grade inflation [9] and those who suggest that students
may be earning the higher grades they are receiving [11].

Figure 1: Score histograms of four assignments,
along with the PDFs of the best-fit normals (dashed
red) and best-fit logit-normals (solid blue).

The normal assumption is commonplace in modern research
into educational data. Grade distributions are usually pre-
sented to students in terms of their mean and variance, and
they are often visualized as normal distributions [17]. As ed-
ucation becomes more digitized, statistical models of grading
become more widespread. For example, peer grading models
allow MOOC’s to assign accurate grades to students based
on noisy estimates from their classmates. State of the art
peer grading models use normal priors over grades [19, 18],
which will result in normal-looking distributions. Both of
these examples can benefit from challenging the normal as-
sumption. In the first case, finding new ways to parameterize
grade distributions can help us better interpret and visualize
student behavior. In the second, a more accurate prior over
grades would help peer grading models assign more accurate
grades to students.

In this paper, we analyze over 4000 assignments graded on
the Gradescope platform [22]. These assignments are pri-
marily exams from undergraduate STEM courses, and as
a result the data is highly polytomous (many scoring cate-
gories per question). However, principal component analysis
(PCA) reveals that these exams have good low-rank approx-
imations, meaning that the data is very structured.



First, we examine the ability of different families of distri-
butions to model the scores in our dataset. Specifically we
compare the normal to three bounded two-parameter distri-
butions. We find that the logit-normal [1, 5] is consistently
the best choice, followed by the beta, which is known to
approximate the logit-normal [8].

In the second part of this paper, we build a simple continu-
ous polytomous IRT model using a logit-normal assumption
at the item level. Our model outperforms both the Gen-
eralized Partial Credit Model [16] (a standard discrete IRT
model) and the Continuous Response Model [20] (a stan-
dard continuous IRT model) on the Gradescope data, de-
spite having fewer parameters than either. This indicates
that we can simplify and improve polytomous IRT models
using structural assumptions about assignment data.

1.1 Related Work
When analyzing student behavior, it can be difficult to dis-
tinguish between cases where data is actually normal and
cases where an assumption of normality is influencing the
distribution. For example, SAT scores are known to be nor-
mally distributed, but this is because raw SAT scores are
translated into final scores using a system that enforces a
normal distribution [3]. More subtly, probabilistic models
for determining scores based on peer grades often use nor-
mal priors over their output [18, 19]. As a result, they will
push grade distributions to be normal. The question then
remains about whether these distributions should look nor-
mal in reality or another prior needs to be found.

Of course, grade curving is the most direct way in which
student performance is influenced to be normal. Although
it remains a common practice, research has shown that most
students prefer not to be graded on a curve [6], that both
students and professors find indiscriminate grade curving
unethical [15], and that grade curving can amplify the ran-
domness of test-taking as a measure of student aptitude [12].
It has also been argued that educators should be striving to
avoid normally distributed student outcomes, rather than
enforce them [4, 23]. If this is the case, then we need to
actively seek out new distributions for describing and un-
derstanding test scores.

Polytomous IRT models generally fall into two categories.
Discrete models like Generalized Partial Credit [16] and Gra-
ded Response Models [21] model each point on each question
separately, scaling with the number of scoring categories per
question. These models make very few assumptions about
the relationship between different scores and thus do not
take advantage of any underlying structure in the data. Con-
tinuous models like the Continuous Response Model [20] are
used less frequently, but they scale only with the number
of questions in the assignment. They do this by making
assumptions about the structure of the item characteristic
curves (ICC’s). This means that if a dataset’s ICC’s follow
a consistent pattern, then a continuous model can thrive.

The Gradescope data we are working with is much more
polytomous than most IRT datasets. This is because it
comes from a wide variety of college-level courses rather
than standardized tests. Despite this heterogeneity, past
work on Gradescope data has found patterns in question

ordering and the interpretation of the first several princi-
pal components [13]. This indicates that there may be un-
derlying structure that a continuous IRT model could take
advantage of.

2. THE DATASET
Our initial dataset consists of 6,607 assignments submitted
to Gradescope, an online tool for uploading and grading stu-
dent work [22]. Typically students will do their assignments
by hand using a template provided by the instructor. After
the assignments have been scanned and uploaded to Grade-
scope, instructors can grade them using a digital rubric that
is always visible and modifiable. To ensure that the major-
ity of the data consists of college-level exams, all included
assignments:

• are instructor-uploaded1

• have a fixed template
• have at least 3 questions
• have titles that do not include terms that describe

other kinds of student work (e.g. “HW” or “Quiz”)
• have titles that do not include terms that are indicative

of non-college-level work

The assignments were graded between Spring 2013 and Spring
2018, and come from 2748 courses at 139 different higher-
education institutions2. The top three subject areas in the
dataset are Electrical Engineering & Computer Science (50%
of assignments), Math & Statistics (22%), and Chemistry
(11%). The median number of courses per school is 4, and
the median number of assignments per course is 2.

When fitting curves to exam scores, we want there to be
enough values that the distribution is interesting/nontrivial
and enough data points that the observed histogram is some-
where near the underlying distribution. For this reason, we
filter out all assignments that have fewer than 10 unique
scores or fewer than 75 students. We are then left with 4115
assignments. Figure 2(b) shows the joint distribution be-
tween student count and number of unique scores, as well as
their marginals. Observe that the vast majority of assign-
ments have 75-200 students and 20-80 unique scores.

Throughout this study we store each assignment as a matrix
A where Aij represents student j’s score on question i. We
use the term “exam score” to refer to the sum of a student’s
question scores, so to analyze exam scores, we sum the rows
of the assignment matrix A.

2.1 Visualizing the Data
One shortcoming of the normal is that it can only represent
symmetric distributions.3 We measure the symmetry of an
exam score distribution using skew (skewness), which can be

1On Gradescope, students tend to upload their own home-
work, while exams tend to be scanned and uploaded by the
instructor.
2However, UC Berkeley, UC San Diego, Stanford Univer-
sity, University of Michigan, and University of Washington
account for half of all assignments in the dataset.
3This may not be a problem on all forms of test data. For
example, if questions were equally weighted and (relatively)
independent, the Central Limit Theorem would predict a
symmetric distribution.



(a) (b) (c)

Figure 2: (a) Normal doesn’t fit. Blue histogram: assignment skew distribution. Red histogram: skews
of assignments had they been drawn from normal distributions (as described in section 2.1). (b) Number
of students vs. number of unique exam scores for each assignment in the filtered dataset. (c) Number of
questions vs. average number of scoring categories per question for each assignment in the filtered dataset.

a good indicator of how normal a distribution is [2]. A skew
value of (or near) 0 indicates a symmetric distribution, while
negative and positive skew values indicate large tails on the
left and right respectively. The blue histogram in Figure
2(a) shows the skews of the exam score distributions in our
dataset. Note that they tend to be negative, meaning that
exams tend to have larger tails of below-mean students than
of above-mean students. To generate the red histogram in
Figure 2(a), we performed the same experiment on a sim-
ulated dataset created by redrawing the scores of each as-
signment from its best-fit normal4. The large difference in
both mean and variance of these histograms shows that our
observed skews would not be very likely were the data nor-
mally distributed. In order to quantify this intuition, we
performed a D’Agostino’s K-squared test of normality to
determine how likely it would be for each assignment’s skew
to arise from a normal distribution [2]. We found that 73%
of assignments had a p-value of 0.05 or lower, indicating that
(just on the basis of skew) the vast majority of assignments
are very unlikely to have come from a normal distribution.

When fitting IRT models to the assignments, we are inter-
ested in how polytomous each assignment is. Figure 2(c)
shows the joint distribution between the number of questions
an assignment has and the average number of scoring cate-
gories per question. The negative correlation between these
two stats is unsurprising5, but it means that we can test our
models on highly polytomous items or large question-counts
but not both at the same time.

2.2 Dimensionality
PCA [10] can give us insight into the dimensionality of our
data. A previous use of PCA on Gradescope data [13]
found that the first principal component distinguishes be-
tween high and low scoring students, while later principal
components correspond to skill at particular types of ques-
tions (e.g. multiple choice, free response).

4If an assignment had n students, sample mean x̄ and sample
variance S, our simulated version of that assignment would
consist of n draws from N(x̄, S).
5There are only so many points that a student could be
expected to earn over the course of a single exam.

We use PCA to describe the dimensionality of a given exam,
where dimensionality is defined as the number of principal
components required to account for 80% of the variance be-
tween students. Put simply, we are interested in what rank
is required to form a “pretty good” approximation for the
exam matrix. Intuitively, if exams have low dimensionality,
then they have a large amount of structure we can exploit
when modeling them.

We find that number of students and number of questions
(the two dimensions of our exam matrix) do not influence di-
mensionality in the same way. Number of students is weakly
correlated with dimensionality (0.20 Pearson correlation),
and on average it requires over 250 extra students to add a
dimension. Number of questions, on the other hand is more
strongly correlated (0.85 Pearson correlation), and one di-
mension is added every 3.3 questions. This is consistent with
the finding in [13] that principal components correspond to
specific student aptitudes. Overall, this analysis indicates
that choice of model should be based on the features of the
exam itself, not on how many students are taking it.

We also examined the first principal component in isola-
tion, and found that it generally indicated a student’s score.
Across our dataset, the average magnitude of the Pearson
correlation between exam score and the first principal com-
ponent was 0.965. In addition, the first principal compo-
nent on average accounts for 43% of the variability in an
assignment. The strength of the first principal component
indicates that IRT models might only need one-dimensional
student ability parameters to be successful on this dataset.

3. FITTING EXAM SCORES
Our first modeling task is to compare the ability of differ-
ent two-parameter distributions to fit the exam scores in our
dataset. Since tests have minimum and maximum scores, we
choose bounded distributions. In addition, due to our find-
ings in 2.1, we choose distributions that are not symmetric.

3.1 The Distributions
The truncated normal distribution is the result of bound-
ing the normal above and below. It is characterized by the



Normal Trunc Beta Logit

Beats Normal - 100% 92% 87%
Beats Trunc 0% - 67% 75%
Beats Beta 8% 33% - 68%
Beats Logit 13% 25% 32% -

Average LL 0.272 0.333 0.336 0.353

Table 1: Win Rates and Likelihoods: How often
does each distribution outperform the others? The
logit-normal, beta and truncated normal models are
all better replacements for the normal distribution.
logit-normal has the highest likelihood.

mean and variance of its underlying normal, and when the
bounds are known, there is a closed form maximum likeli-
hood (MLE) estimate of these parameters [7]. The truncated
normal assigns a higher probability density to every value in
its domain than its underlying normal does, and as a result
it will strictly outperform the normal distribution in likeli-
hood. Although it is not symmetric around its mean, if it
includes the mean of the underlying normal, then its prob-
ability density function (PDF) will be mirrored across that
point. The truncated normal will be a good fit if test scores
are drawn not from a normal distribution but from a slice
of a normal distribution.

The beta distribution is the conjugate prior of the Bernoulli,
characterized by two parameters referred to as α and β. It
has no closed form MLE estimates, but there is a closed form
method of moments solution that can be used as a starting
point for optimization. When α = β, the beta has no skew,
but it can achieve a wide range of skew values by varying
the difference between the two parameters. The beta does
not have an intuitive interpretation in this context.

The logit-normal distribution [1, 5] is the result of ap-
plying the sigmoid (logistic) function6 to data sampled from
a normal distribution. Like the truncated normal, its pa-
rameters are the mean and variance of its underlying nor-
mal. The logit-normal and beta are known to approximate
each other [8], but the logit-normal comes with the advan-
tage of having closed form MLE estimates of its parame-
ters7. It also has a nice interpretation that comes from item
response theory. Logistic IRT models like 1PL/2PL/3PL
take normally-distributed student abilities and use a linear
transformation plus a sigmoid to transform them into prob-
abilities. If the logit-normal is a good fit for exam scores, we
can see it as performing the same kind of transformation to
go from an underlying unbounded variable to an observed
bounded one.

In addition to these, we tried a Two Gaussian Mixture Model
in case distributions were bimodal. However, it performed
worse than all three of these distributions despite having
more parameters, so we did not include it in our results.

6The sigmoid, given by σ(x) = 1
1+e−x compresses the reals

into the range (0, 1). Its inverse, the logit function given by
σ−1(p) = log p

1−p , does the opposite.
7Unsurprisingly, the MLE estimates for the mean and vari-
ance of the underlying normal are the mean and variance of
taking the logit (σ−1) of the exam scores.

Figure 3: Difference in performance between the
candidate distributions across sample sizes. Bands
show standard error. Assignments were downsam-
pled to simulate lower student counts.

3.2 Evaluating the Distributions
We fit each of the three distributions above plus the nor-
mal to each of the 4115 sets of exam scores in our filtered
dataset. In order to more easily fit our bounded distribu-
tions to the data, we compress all scores into the range
[0.05, 0.95]8. Specifically, if we have observed exam scores
x1, ..., xN , we map each xi to

x′i = 0.9 ∗ xi − xmin

xmax − xmin + 0.05

where xmin = mini xi and xmax = maxi xi. We use MLE
parameter estimation to fit the distributions and evaluate
them using log likelihood, defined as

LL(θ) =
1

N

N∑
i=1

log f(x′i|θ)

where f is a PDF parameterized by θ9. We obtain the same
semantic results when we use Earth Mover’s Distance in-
stead of Log-Likelihood as our goodness of fit metric.

3.3 Distribution Results
After performing this experiment, we find a clear hierarchy
with the logit-normal performing best, followed by the beta,
then the truncated normal, then the normal. Table 1 shows
this hierarchy in two ways. First, the average log likelihood
across assignments increases from left to right. Second, we
can see that the logit-normal is a better fit than the beta 67%
of the time, the beta is a better fit than the truncated normal
67% of the time, and the truncated normal is a better fit than
the normal 100% of the time10. It is a little bit surprising
that the beta outperforms the normal slightly more often

8[0, 1] may seem like the more natural choice, but both the
beta and the logit-normal perform poorly when values are
close to 0 or 1 (with the logit-normal unable to produce 0’s
and 1’s at all).
9Note that because the PDF’s are constrained to the range
0 to 1, our log likelihoods will come out positive.

10As mentioned above, this is because the truncated normal’s
PDF lies strictly above the PDF of its underlying normal.



Baseline GPCM CRM LNM

Parameters/Item 0 B + 1 3 2
Average RMSE 0.307 0.258 0.278 0.255

Table 2: Loss for each IRT model measured across
4115 assignments. “B” refers to the number of scor-
ing categories for a given item.

than the truncated normal does, but this is the only result
in Table 1 that is inconsistent with our proposed hierarchy.

Figure 3 shows that our conclusion that the logit-normal is
the best choice is robust to sample size. All distributions
fit better as sample size increases, since larger numbers of
students result in smoother score histograms.

4. LOGIT-NORMAL IRT
Many of our results so far indicate that highly polytomous
exam data is also highly structured. Polytomous IRT schemes
like the Generalized Partial Credit Model (GPCM) [16] and
Graded Response [21] scale with the number of scoring cate-
gories per question and thus do not take advantage of struc-
ture in the shapes of the item characteristic curves. On
the other hand, continuous models like the Continuous Re-
sponse Model (CRM) are able to cut down on parameters by
assuming a parameterized function for each ICC. In this final
section, we will propose a continuous model that uses logit-
normals to make such simplifying assumptions and thus take
advantage of the underlying structure of our data.

We find that when it comes to fitting exam scores, the logit-
normal is just as successful when there are smaller num-
bers of unique scores available. Our model pushes that idea
to its limit by modeling each question on an exam with a
single logit-normal. The assumption is that highly poly-
tomous items will behave like mini exams and as a result
logit-normals will describe them well.

Our model fits a single ability θj ∈ R to each student j and
(as alluded to above) fits a logit-normal distribution to each
item i with parameters µi and σi. Let Si represent a random
student’s score on question i, and let Sij represent student
j’s score on question i. Our parameters are then related by
the following equations:

θ ∼ N(0, 1)

Si ∼ Logit-Normal(µi, σi)

E[Sij ] = σ(σiθj + µi)

As in section 2, we refer to our observed data as a matrix
A where Aij stores student j’s score on question i. In addi-
tion, we assume that the data has been shifted and scaled
as described in section 3.2. We fit this model in two steps:

1. Use MLE estimation to choose each µi and σi to fit
the observed distribution of Si’s. Specifically, if Ai is
the vector of observed scores on question i, we set µi
and σi to be the sample mean and sample standard
deviation of σ−1(Ai).

11

11Here we are applying the logit function σ−1 element-wise.

2. Choose each θj to minimize the total squared error of
the E[Sij ]’s. Specifically:

θj = argmin
θ

∑
i

(E[Sij ]−Aij)2

= argmin
θ

∑
i

(σ(σiθj + µi)−Aij)2

We use least squares to fit the θ’s because we have not de-
fined a probability distribution over Sij , which would be
required to perform MLE. More research is required to de-
termine what kind of probability distribution centered at
E[Sij ] will perform best.

4.1 Evaluating the IRT Models
We will evaluate our model based on how well it can use the
parameters it has learned to predict student scores on each
question. Note that in-sample evaluation is the norm for IRT
[14]. Specifically we will measure the RMSE between the
predicted E[Sij ]’s and the observed Aij ’s. If an assignment
has n students and m questions, this is calculated as:

RMSE(θ, µ, σ) =

(
1

mn

m∑
i=1

n∑
j=1

(E[Sij ]−Aij)2
)1/2

4.2 IRT Results
Table 2 shows the comparison across the whole dataset be-
tween our Logit-Normal Model (LNM) and:

• a baseline that uses each student’s normalized exam
score as a prediction for each question.
• a 2PL Generalized Partial Credit Model (GPCM) [16]

fit using EM.
• a Continuous Response Model (CRM) [20] fit using the

EM approach described in [24].

The fact that our model has the best performance despite
having the fewest parameters indicates that it is taking ad-
vantage of the structure of highly polytomous items. We can
conclude that discrete models are more complicated than
necessary on data like this. We can also conclude that the
assumptions about item characteristic curves in CRM are
not as good as the logit-normal assumption on this data.

5. CONCLUSIONS
Overall, we have shown that highly polytomous exam data
has a large amount of underlying structure that can help
us simplify our probabilistic models. Out of three bounded,
asymmetric candidates, the logit-normal came out on top
as the best prior for exam scores. In addition, the logit-
normal’s ability to model individual polytomous items al-
lowed us to develop a polytomous IRT model that is simple
and well-suited to this kind of data. We hope to have chal-
lenged the traditional assumption that the normal is the best
prior for student behavior, and we hope that more work will
be done to simplify IRT models for the highly polytomous
data produced by college-level courses.

6. FUTURE WORK
The main loose end from this paper is the fact that we did
not define full probability distributions over Sij in the logit-
normal model. Without these distributions, the model is



Figure 4: Joint distribution of σ and µ item param-
eters from the Logit-Normal Model.

able to predict scores and abilities but unable to act as a gen-
erative model. Future research needs to be done to find out
what family of distributions best models Sij . In addition,
Figure 4 shows that there is a strong (somewhat ellipsoidal)
relationship between the item parameters of our model, in-
dicating that there may be further structure to exploit in
highly polytomous items.

While our results are convincing in the highly-polytomous
domain, more work is required to see how well they gener-
alize to less polytomous data. In addition, the logit-normal
needs to be tested on downstream tasks like peer grading in
order to verify that it is an effective prior for exam scores.

In the interest of reproducibility, and to enable further sci-
ence, the fully anonymized dataset used in this paper will be
made available to other researchers for appropriate academic
use. To gain access to the data, researchers must provide
IRB approval documentation and must sign an agreement
that ensures the anonymized data is treated appropriately.
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